The most abundant plasma protein, human serum albumin (HSA), plays a key part in the body's antioxidant defense against reactive species. This study was aimed at correlating oxidant-induced chemical and structural effects on HSA. Despite the chemical modification induced by the oxidant hypochlorite, the native shape is preserved up to oxidant/HSA molar ratio <80, above which a structural transition occurs in the critical range 80-120. This conformational variation involves the drifting of one of the end-domains from the rest of the protein and corresponds to the loss of one-third of the alpha-helix and a net increase of the protein negative charge. The transition is highly reproducible suggesting that it represents a well-defined structural response typical of this multidomain protein. The ability to tolerate high levels of chemical modification in a folded or only partially unfolded state, as well as the stability to aggregation, provides albumin with optimal features as a biological buffer for the local formation of oxidants.
Structural response of human serum albumin to oxidation: bological buffer to local formation of hypochlorite / DEL GIUDICE, Alessandra; Dicko, Cedric; Galantini, Luciano; Pavel, Nicolae Viorel. - In: JOURNAL OF PHYSICAL CHEMISTRY. B, CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES & BIOPHYSICAL. - ISSN 1520-6106. - STAMPA. - 120:48(2016), pp. 12261-12271. [10.1021/acs.jpcb.6b08601]
Structural response of human serum albumin to oxidation: bological buffer to local formation of hypochlorite
DEL GIUDICE, ALESSANDRA
;GALANTINI, Luciano;PAVEL, Nicolae Viorel
2016
Abstract
The most abundant plasma protein, human serum albumin (HSA), plays a key part in the body's antioxidant defense against reactive species. This study was aimed at correlating oxidant-induced chemical and structural effects on HSA. Despite the chemical modification induced by the oxidant hypochlorite, the native shape is preserved up to oxidant/HSA molar ratio <80, above which a structural transition occurs in the critical range 80-120. This conformational variation involves the drifting of one of the end-domains from the rest of the protein and corresponds to the loss of one-third of the alpha-helix and a net increase of the protein negative charge. The transition is highly reproducible suggesting that it represents a well-defined structural response typical of this multidomain protein. The ability to tolerate high levels of chemical modification in a folded or only partially unfolded state, as well as the stability to aggregation, provides albumin with optimal features as a biological buffer for the local formation of oxidants.File | Dimensione | Formato | |
---|---|---|---|
DelGiudice_Structural-response_2016.pdf
Open Access dal 11/11/2017
Note: https://pubs.acs.org/doi/10.1021/acs.jpcb.6b08601
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.